

MINING 4.0 - A Journey

Professor Laeeque Khan Daneshmend, PhD, DIC

Emeritus Chair in Mine-Mechanical Engineering The Robert M. Buchan Department of Mining Queen's University, Canada

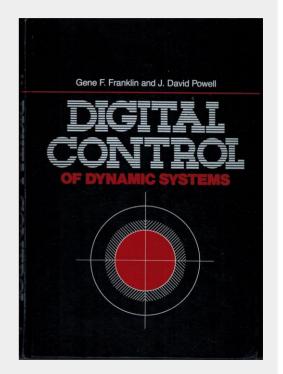
JUNTOS POR MÁS OPORTUNIDADES Y BIENESTAR PARA TODOS

Overview

- My journey: where my perspective comes from
- Technology's journey: Industry 4.0
 - and the long road to Industry 3.0
- Mining's journey: Digital Transformation and Mining 4.0
 - where are we? (current status)
 - where can we get to? (feasible goals)
 - how can we get there? (strategy)
 - challenges and mitigations?

Overview

- My journey: where my perspective comes from
- Industry 4.0
 - and the long road to Industry 3.0
- Digital Transformation and Mining 4.0
 - where are we? (current status)
 - where can we get to? (feasible goals)
 - how can we get there? (strategy)
 - challenges and mitigations?



Bachelors Degree, 1981

Electronic Engineering

Imperial College London

Graduate Studies – PhD 1985

- Mechanical Engineering
- Manufacturing Automation

ADAPTIVE CONTROL AND MONITORING

OF A C.N.C. LATHE

USING FEED-FORCE AND MACHINE-VISION

3v

Laeeque Khan DANESHMEND, B.Sc.

January 1985

THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN THE FACULTY OF ENGINEERING

UNIVERSITY OF LONDON

AND

FOR THE DIPLOMA OF MEMBERSHIP OF IMPERIAL COLLEGE

Imperial College London

Graduate Studies – PhD 1985

- Mechanical Engineering
- Manufacturing Automation

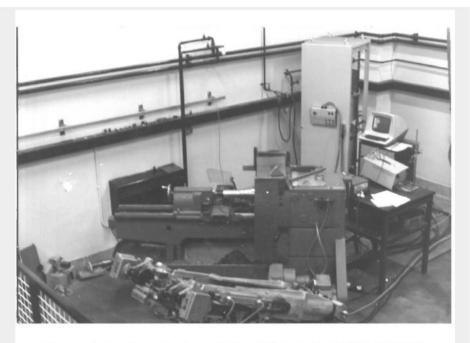
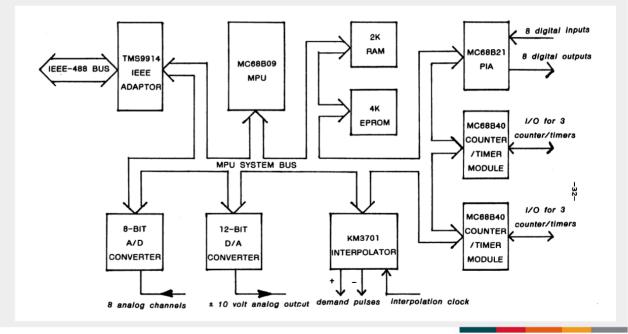


Figure 2.5: Overall view of the lathe and control cabinet.

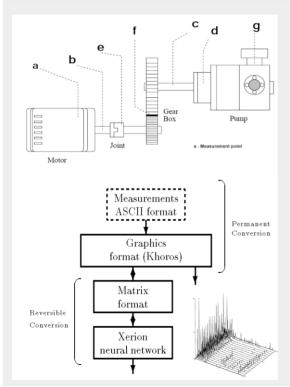
located in the Imperial College Robotics Laboratory

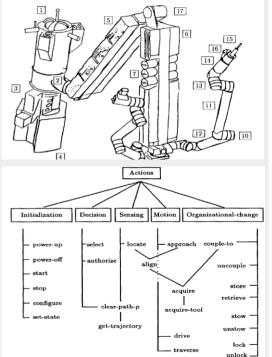


Graduate Studies - PhD 1985

- Mechanical Engineering
- Manufacturing Automation

Real-Time


- > Software
- > Hardware
- Sensors
- Machine Control


Mid 1980's / Early 1990's Early academic career

Robotics

- Field Robotics
- Space Robotics

Artificial Intelligence

- Neural Networks
- Symbolic Reasoning

A CATALYST (1989)

Jon Peck

Late 1980's / Early 1990's Initial introduction to Mining

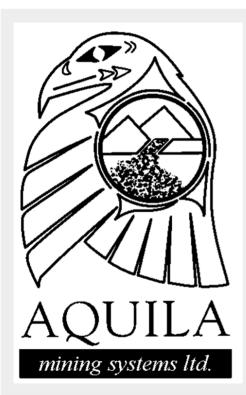
Surface Blast-Hole Drills

- Control
- Monitoring-While-Drilling

Electric Rope-Shovels

Diggability Monitoring

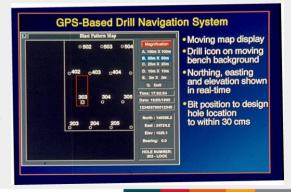
Underground


- LHD Monitoring
- Diamond-Drill Automation
- Reliability & Maintenance

Mid-to-Late 1990's **Entrepreneurial Phase**

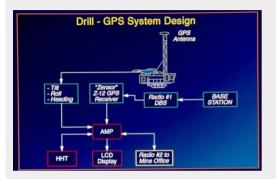
First-To-Market Commercial Products

Surface Blast-Hole Drills


- **GPS**
- Control
- **MWD**

Electric Rope-Shovels

- Diggability Monitoring
- **Fault Detection**



Benefits Of A Drill Navigation System Reduced surveying needs all-weather, 24-hour-a-day operation Corrected hole depths to target elevations in real-time: more even benches reduced over- and under-drilling Reduced blasting costs through improved fragmentation

Mid-to-Late 1990's Entrepreneurial Phase

First-To-Market Commercial Products

Surface Blast-Hole Drills

- GPS
- Control
- MWD

Electric Rope-Shovels

- GPS
- Diggability Monitoring
- Fault Detection

My Experience in Mining Technology over the past 35+ years

Technology hasn't been a Panacea...

Lots more Data

+

Lots more Computing Power

...

But often the results are
NOT USEFUL
or
NOT USED

Overview

- My journey: where my perspective comes from
- Industry 4.0
 - and the long road to Industry 3.0
- Digital Transformation and Mining 4.0
 - where are we? (current status)
 - where can we get to? (feasible goals)
 - how can we get there? (strategy)
 - challenges and mitigations?

Industry 4.0

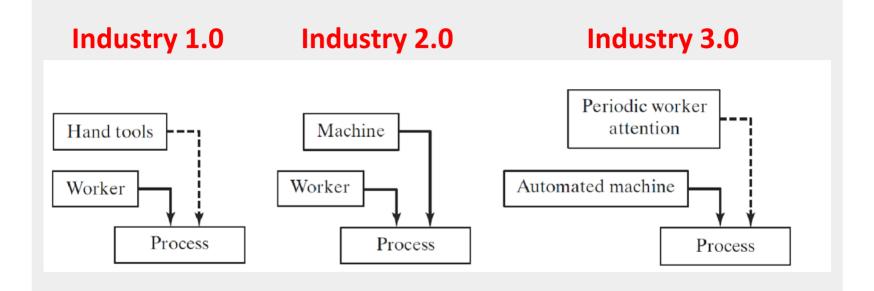
The advent of Industry 4.0 is commonly placed in the early 2010s onward, characterized by accelerating trends toward

- pervasive computing
- affordable data storage
- robust connectivity
- inexpensive sensor technologies

Taken together, these have resulted in

• "co-engineered interacting networks of physical and computational components" — otherwise known as cyber-physical systems (CPS), smart systems, or embedded systems.

The power and potential of CPS has in turn been magnified via ever increasing connectivity to yield the Industrial Internet of Things (IIoT) leveraged via cloud computing to enable more widespread industrial application of recent advances in machine learning and artificial intelligence technologies.



Industry 3.0 Mindset (Legacy Approach)	Industry 4.0 Mindset (Modern Approach)
Efficiency & stability focused	Future-focused
Process-first	Digital-first
Experience-driven decision making	Al & data-driven decision making
Standardized & repeatable	Smart & adaptive
Historical & descriptive analytics	Predictive & prescriptive analytics
Just-in-time operations	End-to-end agility
Transactional engagement (one-time, one-size)	Personalized engagement (continuous, tailored)
Capital Expenditure (CapEx)-driven	Continuous funding & improvement

Overview

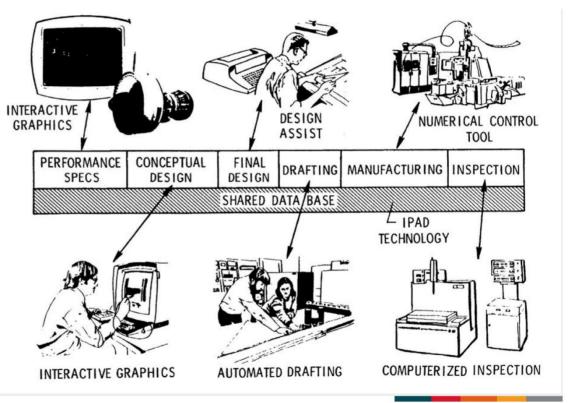
- My journey: where my perspective comes from
- Industry 4.0
 - and the long road to Industry 3.0
- Digital Transformation and Mining 4.0
 - where are we? (current status)
 - where can we get to? (feasible goals)
 - how can we get there? (strategy)
 - challenges and mitigations?

Industry 3.0

- Made possible by availability of more widely accessible digital computing from the late 1940s onwards.
- Leading to fundamental changes to fundamental aspects of manufacturing in the 1950s through development of computer numerical control (CNC) for machine tools commonly used in manufacturing, such as lathes and milling machines.
- Advent of computer-aided design (CAD) and computer-aided manufacturing (CAM) in the 1960s onward.
- Resulting in ability to rapidly reprogram CNC machine tools, and transformation of manufacturing processes—now known as computer integrated manufacturing (CIM).
- The development and widespread deployment of the programmable logic controller (PLC) from the 1970s onward, enabled cost-effective and flexible automation of industrial processes and systems beyond manufacturing.
- PLC capabilities have continued to evolve in tandem with the decreasing cost of computing power, and they are still widely used for monitoring and control purposes in most industrial sectors.

Industry 3.0 Initial Drivers – Aerospace Manufacturing

- → → → Computer Aided Design
 & Computer Aided Manufacturing (CAD/CAM)
- Extremely high demand for production of aerospace parts with
 - Challenging Part Design
 - Complex Shapes
 - Extremely Tight Tolerances
 - Materials
 - High Cost of Scrapping parts
- Shortage of Skilled Machinists

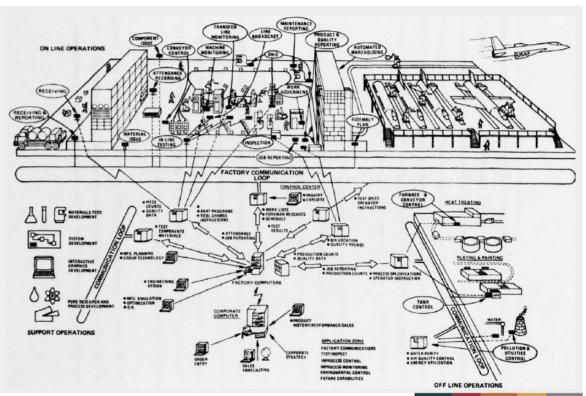


Industry 3.0 to get to CAD/CAM

~ 25 years

Government Funding (\$\$\$\$\$\$)

Standardization

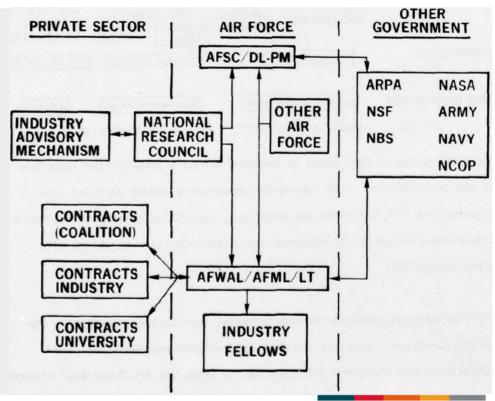


Industry 3.0 to get to CIM

~ 25 +10 years

Government Funding (\$\$\$\$\$\$)

Standardization


Industry 3.0 to get to CIM

~ 25 +10 years

Government Funding (\$\$\$\$\$\$)

Standardization

Involvement of broad spectrum of stakeholders

Overview

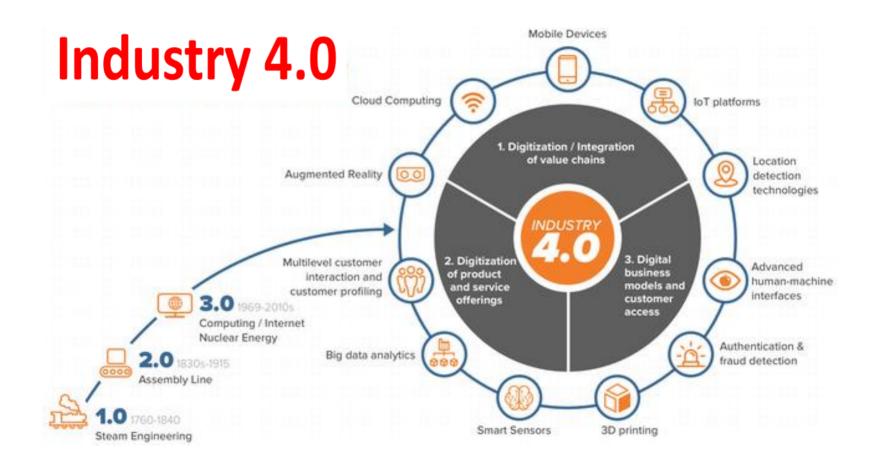
- My journey: where my perspective comes from
- Industry 4.0
 - and the long road to Industry 3.0
- Digital Transformation and Mining 4.0
 - where are we? (current status)
 - Micro-Level (Equipment)
 - where can we get to? (feasible goals)
 - how can we get there? (strategy)
 - challenges and mitigations?

Digital Transformation

Digital transformation is about change at the macro level. The business is digitally transformed, enabling the strategic modification of business processes. Some other common terms used regarding digital transformation are:

- **Digitization:** the processes and technologies which enable the digital representation of information and its digital processing.
- **Digitalization:** the processes and technologies which enable physical systems to capture their own state and operating context and share that information as required. (Digitization and digitalization are about digital technology; that is, information is digitized, processes are digitalized.)
- **Industry 4.0:** the technological paradigm shift within which digital transformation has become possible.

Mining 4.0 (my personal definition... debatable!)


The appropriate (better?) information

To the relevant people/systems

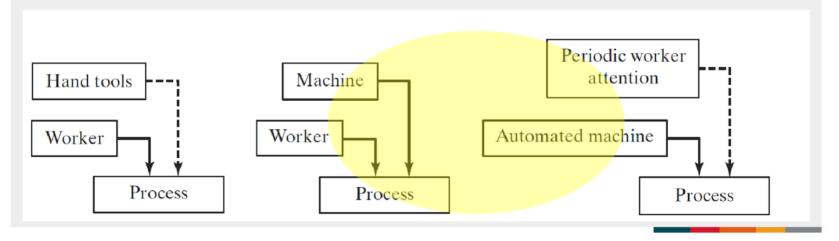
At the right time

To make better decisions

Leading to better outcomes (safety, economic, environmental, social, ...)

WHERE ARE WE TODAY IN THE MINING INDUSTRY? (At the Equipment Level)

Industry 2.0 Industry 3.0 Industry 1.0 Periodic worker attention Machine Hand tools Worker Automated machine Worker Process **Process Process**



WHERE ARE WE TODAY IN THE MINING INDUSTRY? (At the Equipment Level)

Industry 1.0

Industry 2.5???

SAE J3016™LEVELS OF DRIVING AUTOMATION

S4E LEVEL O

S4E LEVEL 1

SÆ SÆ LEVEL 2 LEVEL 3

SÆ LEVEL 4

You are not driving when these automated driving

S4E LEVEL 5

What does the human in the driver's seat have to do? You are driving whenever these driver support features are engaged - even if your feet are off the pedals and

You must constantly supervise these support features:

These are driver support features

These are automated driving features

What do these features do?

OR brake/

Example Features

For a more complete description, please download a free copy of SAE J3016; https://www.sae.org/standards/content/J3016 201806/

GMG's Mining Automation Maturity Model

LEVEL 2 SEMI-**AUTONOMOUS**

The system performs a portion of its tasks autonomously within a set of defined operations. The operator performs other tasks and is generally responsible for situation awareness

HIGHLY AUTONOMOUS LEVEL 3 CONDITIONALLY

The system can

autonomously.

including situation

system can identify

when intervention is

halted state. An

autonomous

as a fallback.

awareness in the

operations

designated

AUTONOMOUS operations autonomously complete continuous designated autonomous area. The needed and will enter a operator/supervisor car autonomous disengage the system and must be available to operate it manually system to disengage.

The system can

operations

and without a

complete continuous

autonomously with

The system can complete continuous (including situation awareness) in the autonomous area. The system can identify when intervention is needed and functions as a fallback, adapting the operations to accommodate minimal risks. It will enter a halted state in higher risk situations. The operator/supervisor can also request the

LEVEL 4

LEVEL 5 FULLY **AUTONOMOUS**

designated autonomous area. The system can identify when intervention is needed. and functions as a fallback, adapting operations to accommodate minimal risks. It will enter a halted state in higher risk situations. The autonomous operator/supervisor can also request the system to disengage.

LEVEL 0 NO AUTOMATION

Entirely manual. Operator completes all tasks.

Manual

LEVEL 1 ASSISTANCE

The system has some functionspecific automated features. The operator completes most tasks and maintains control

Semi-Autonomous

Autonomous

MANUAL OPERATION:

The mine uses manual equipment for their operations.

HYBRID OPERATION:

The mine has a mixed fleet of manual, semi-autonomous, and autonomous equipment.

HIGHLY AUTONOMOUS OPERATION:

The mine has a fleet of all or mostly autonomous equipment

GMG's Mining Automation Maturity Model - Examples

- Level 0: an old-fashioned "dumb" Load-Haul-Dump (LHD) with little or no sensing or computing capabilities built into it.
- Level 1: an LHD with a rudimentary level of sensing and computing capabilities e.g. measuring the weight of the load of material in the LHD bucket and displaying it to the operator, potentially also initiating alarms for excessive load and even possibly disabling hauling until the bucket load was reduced.
- Level 2: an LHD that can perform the "haul" **portion of its function without human operator intervention** under certain conditions (e.g., a well-maintained haulage route, with no falls of rock or other obstacles).
- Level 3: an LHD that can perform all three aspects of its function (load, haul, and dump) without intervention of a human operator under specified operational condition, in a specific area designated for autonomous operations—and determine when to request human intervention e.g. if the fragmentation of the rock in the muck pile is beyond the bounds of specified operation conditions, such that the autonomous loading function would fail to load the bucket.

GMG's Mining Automation Maturity Model - Examples

- •Level 4: an LHD that could perform all three aspects of its function (load, haul, and dump) without intervention of a human operator under a broad range of operating conditions, in a specific area designated for autonomous operation, and adapt how it functions in response to operating conditions (e.g., adjusting its loading algorithm in response to variations in rock fragmentation).
- Level 5: an LHD that could perform all three aspects of its function (load, haul, and dump) without intervention of a human operator under a broad range of operating conditions, **in any area**, and adapt how it functions in response to operating conditions (e.g., adjusting its loading control algorithm in response to variations in rock fragmentation).

WHERE ARE WE TODAY IN THE MINING INDUSTRY?

(At the Equipment Technology Level)

GMG's Mining Automation Maturity Model

SEMI-

AUTONOMOUS

The system performs

a portion of its tasks

autonomously within

a set of defined

operations. The

operator performs

other tasks and is

generally responsible

CONDITIONALLY AUTONOMOUS

The system can complete continuous operations autonomously. including situation awareness in the designated autonomous area. The system can identify when intervention is needed and will enter a halted state. An autonomous operator/supervisor car disengage the system and must be available to operate it manually

as a fallback

LEVEL 3

LEVEL 4 HIGHLY AUTONOMOUS

The system can complete continuous operations autonomously (including situation awareness) in the designated autonomous area. The system can identify when intervention is needed and functions as a fallback, adapting the operations to accommodate minimal risks. It will enter a halted state in higher risk situations. The autonomous operator/supervisor can also request the system to disengage.

LEVEL 5 FULLY AUTONOMOUS

complete continuous

autonomously with

The system can

operations

and without a designated autonomous area. The system can identify when intervention is needed and functions as a fallback, adapting operations to accommodate minimal risks. It will enter a halted state in higher risk situations. The autonomous operator/supervisor can also request the system to disengage.

LEVEL 0

Entirely manual. Operator completes all tasks.

Manual

NO AUTOMATION

LEVEL 1 ASSISTANCE

The system has some functionspecific automated features. The operator completes most tasks and maintains control.

Semi-Autonomous

for situation

awareness

Autonomous

MANUAL OPERATION:

The mine uses manual equipment for their operations.

HYBRID OPERATION:

The mine has a mixed fleet of manual, semi-autonomous, and autonomous equipment.

HIGHLY AUTONOMOUS OPERATION:

The mine has a fleet of all or mostly autonomous equipment

WHERE ARE WE TODAY IN THE MINING INDUSTRY?

LEVEL 1

ASSISTANCE

The system has

some function-

features. The

most tasks and

maintains control

specific automated

operator completes

(At the Equipment Technology Level)

GMG's Mining Automation Maturity Model

Spanning a broad range depending on

- equipment type
- mining method

LEVEL 0 NO AUTOMATION

Entirely manual.
Operator completes
all tasks.

SEMI-AUTONOMOUS

LEVEL 2

The system performs a portion of its tasks autonomously within a set of defined operations. The operator performs other tasks and is generally responsible for situation awareness

LEVEL 3 CONDITIONALLY AUTONOMOUS

The system can complete continuous operations autonomously. including situation awareness in the designated autonomous area. The system can identify when intervention is needed and will enter a halted state. An autonomous operator/supervisor car disengage the system and must be available to operate it manually as a fallback

LEVEL 4 HIGHLY

The system can complete continuous operations autonomously (including situation awareness) in the designated autonomous area. The system can identify when intervention is needed and functions as a fallback, adapting the operations to accommodate minimal risks. It will enter a halted state in higher risk situations. The autonomous operator/supervisor can also request the system to disengage.

LEVEL 5 FULLY AUTONOMOUS

The system can complete continuous operations autonomously with and without a designated autonomous area. The system can identify when intervention is needed and functions as a fallback, adapting

intervention is needed and functions as a fallback, adapting operations to accommodate minimal risks. It will enter a halted state in higher risk situations. The autonomous operator/supervisor can also request the system to disengage.

Manual

Semi-Autonomous

Autonomous

MANUAL OPERATION:

The mine uses manual equipment for their operations.

HYBRID OPERATION:

The mine has a mixed fleet of manual, semi-autonomous, and autonomous equipment.

HIGHLY AUTONOMOUS OPERATION:

The mine has a fleet of all or mostly autonomous equipment

WHERE ARE WE TODAY IN THE MINING INDUSTRY?

(At the Equipment Technology Level)


Lack of integration between

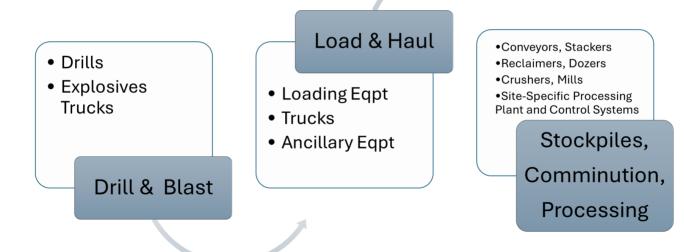
technology vendors and OEMs

Lack of integration within OEM

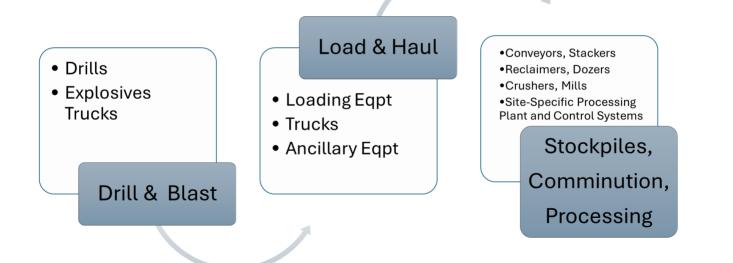
FOUR screens
3 from OEM
1 from 3rd Party

Overview

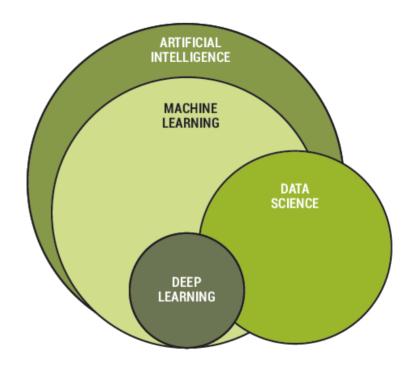
- My journey: where my perspective comes from
- Industry 4.0
 - and the long road to Industry 3.0
- Digital Transformation and Mining 4.0
 - where are we? (current status)
 - Macro-Level (Value-Chain)
 - where can we get to? (feasible goals)
 - how can we get there? (strategy)
 - challenges and mitigations?



WHERE ARE WE TODAY IN THE MINING INDUSTRY? (Macro-Level – Value-Chain)


Conventional Drill-To-Mill Vision

- focused on Equipment / Physical Assets

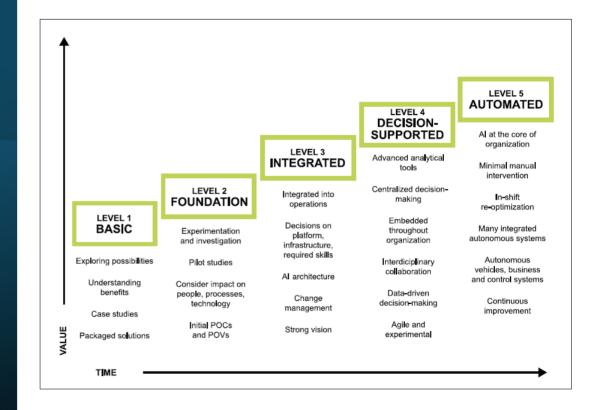

WHERE ARE WE TODAY IN THE MINING INDUSTRY? (Macro-Level – Value-Chain)

Conventional Drill-To-Mill Vision - *Local Optimization, at best* - focused on Equipment / Physical Assets

AI/ML TERMINOLOGY

from: FOUNDATIONS OF AI A FRAMEWORK FOR AI IN MINING, GMG Whitepaper

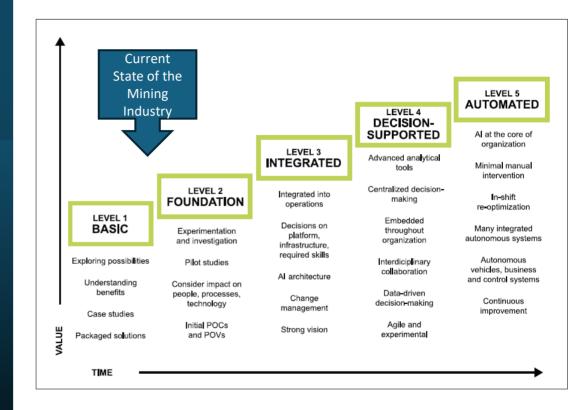
MATURITY LEVELS – AI-Enabled Mine


from: FOUNDATIONS OF AI A FRAMEWORK FOR AI IN MINING, GMG Whitepaper

Level 1	BASIC > Exploration of what AI is, what it does, and what the benefits are.
Level 2	FOUNDATION ► Laying the foundations of the AI strategy, often through experimentation and investigation.
Level 3	INTEGRATED ► Integrating AI into business operations.
Level 4	DECISION SUPPORTED ► Leveraging analytical tools to provide centralized decision- making capabilities.
Level 5	AUTOMATED Al is at the core of the organization and most systems and processes are either fully automated or require minimal manual intervention.

MATURITY LEVELS – AI-Enabled Mine

from: FOUNDATIONS OF AI A
FRAMEWORK FOR AI IN MINING, GMG Whitepaper

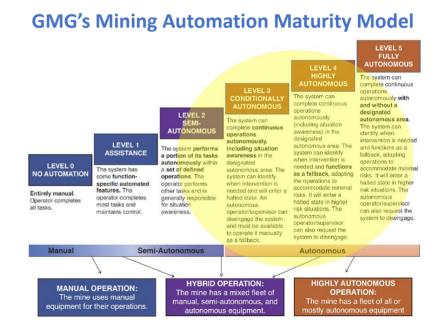

Abbreviations: proof of concept (POC), proof of value (POV)

MATURITY LEVELS - Al-Enabled Mine

from: FOUNDATIONS OF AI A
FRAMEWORK FOR AI IN MINING, GMG Whitepaper

Abbreviations: proof of concept (POC), proof of value (POV)

Overview


- My journey: where my perspective comes from
- Industry 4.0
 - and the long road to Industry 3.0
- Digital Transformation and Mining 4.0
 - where are we? (current status)
 - where can we get to? (feasible goals)
 - how can we get there? (enablers/strategy)
 - challenges and mitigations?

Shift the balance towards Industry 3.0

- Automation of more types of equipment

Coupled with innovations in

- mining methods
- equipment designs

Innovations in equipment designs

 Some concepts developed by OEMs

Need more

- radical thinking
- early adopters
- risk taking

Innovations in mining methods can

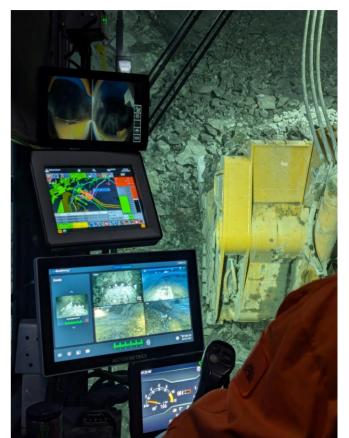
- drive equipment design innovations
- radically transform valuechain

Needs tight coupling betweenequipment designersmine designers

- mine operators

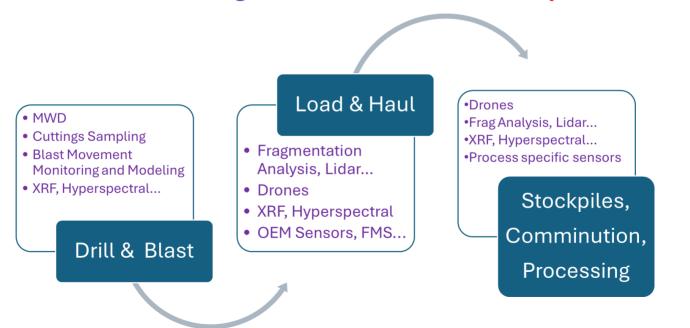
e.g. slot-borer coupled with reef-coring mining method (Epiroc + Anglo-American)

Lack of integration betweentechnology vendors and OEMs


Lack of integration within OEM

FOUR screens 3 from OEM 1 from 3rd Party

GOAL


- Interoperability Standardization Has to be DEMANDED by end-users (Money talks!)

WHERE CAN WE GET TO IN THE MEDIUM TERM? (Macro-Level – Value-Chain)

Data-Driven Drill-To-Mill Vision

- focused on Sensing & Information - Global Optimization

WHERE CAN WE GET TO IN THE MEDIUM TERM? (Macro-Level – Value-Chain)

Data-Driven
Drill-To-Mill Vision

Bridging the Gaps

Mining 4.0 (my personal definition...)

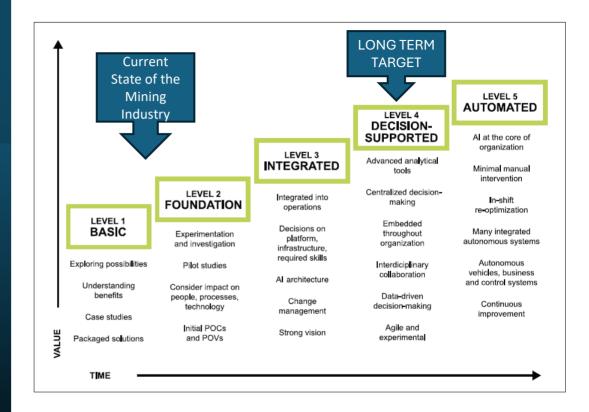
The appropriate (better?) information

To the relevant people/systems

At the right time

To make better decisions

Leading to better outcomes (economic, safety, environmental, social, ...)



MATURITY LEVELS – AI-Enabled Mine

from: FOUNDATIONS OF AI A
FRAMEWORK FOR AI IN MINING, GMG Whitepaper

Abbreviations: proof of concept (POC), proof of value (POV)

LONG TERM TARGET

LEVEL 4: DECISION SUPPORTED MINING

from: FOUNDATIONS OF AI A
FRAMEWORK FOR AI IN MINING, GMG Whitepaper

Level 4 organizations leverage advanced analytical tools in order to provide centralized decision-making capabilities and further improve the operation. At this level, AI is embedded throughout the organization, and it is likely already using a variety of AI technologies. The new technology will significantly affect many business processes and it will be important to ensure that good governance is in place. The following three changes* need to occur in order to embed AI into the organization and to achieve this level of maturity:

- 1. "From siloed work to interdisciplinary collaboration." Interdisciplinary collaboration not only means that domain experts from different areas of operations are working with data scientists and analysts but also that there is collaboration across all areas of operations. For example, predictive maintenance strategies can be rolled out across mine, processing plant, rail, and port operations and the benefits can be fully realized with full collaboration between these entities.
- "From experience-based, leader-driven decision making to data-driven decision making at the front line." In building Al-based systems, operator knowledge is embedded into the system so that when the system makes a recommendation, it should be trusted and not require management approval.
- "From rigid and risk-averse to agile, experimental, and adaptable." The move to agile practices is being widely adopted in the mining industry. To fully embrace these practices, mindsets need to change throughout the entire organization (See Section 1.4).

Overview

- My journey: where my perspective comes from
- Industry 4.0
 - and the long road to Industry 3.0
- Digital Transformation and Mining 4.0
 - where are we? (current status)
 - where can we get to? (feasible goals)
 - how can we get there? (enablers/strategy)
 - Macro-Level (Value-Chain)
 - challenges and mitigations?

The Transformational Opportunity of Al

ADAPTED FROM: AI Transformation in Mining, 2024 Mining Industry White Paper, Microsoft Corporation, March 2024

- Increase the speed and efficiency in decision making
- Enhance the quality and innovation of products and services
- Optimize plans and schedules
- Improve engineering and design
- Solve complex problems and challenges

- Reduce operating costs and risks
- Automate and streamline processes
- Create new and disruptive business models, and
- Transform value propositions and competitive advantages

The Transformational Opportunity of Al

ADAPTED FROM: AI Transformation in Mining, 2024 Mining Industry White Paper, Microsoft Corporation, March 2024

Empower your workforce

Build an inclusive and collaborative culture that attracts, engages, and retains employees who are empowered to do their best work

- Digital field worker
- Talent management and skills enhancement
- Knowledge management and collaboration
- Productivity and process improvement

Operate for the future

Increase operational profitability and productivity by securely connecting and maximizing existing assets

- · Health and safety
- Intelligent supply chain
- Connected assets and operations
- Physics-based models

Generative AI – the Opportunity

ADAPTED FROM: AI Transformation in Mining, 2024 Mining Industry White Paper, Microsoft Corporation, March 2024

Optimizing the value chain and lifecycle

Revolutionizing the nature of work

Capturing value in near-real time

Creating value across corporate boundaries

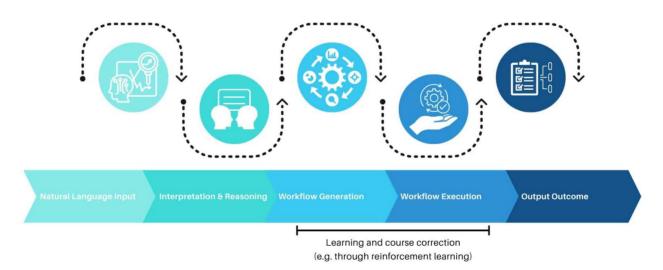
Generative AI – the Opportunity

ADAPTED FROM: AI Transformation in Mining, 2024 Mining Industry White Paper, Microsoft Corporation, March 2024

The mining industry faces Herculean challenges with respect to its workforce.

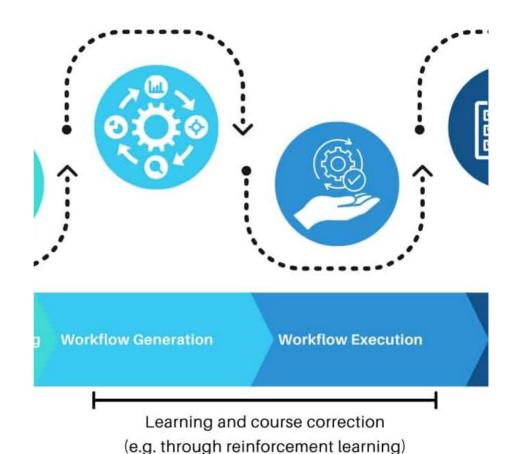
- In general, mining is not perceived as an employer of choice.
- Mine sites are most often located where the talent base is quite small to non-existent, and where
 educational attainment, literacy, and digital fluency may be lacking. Work at mine sites is usually difficult,
 dirty, and dangerous compared to other industries.
- as the baby boom generation retires, the talent pool is shrinking. "Fewer people will be working by the end of the decade—and employers need to brace for a 'forever' labor shortage."

To remain profitable and productive, mining companies and their partners must revolutionize the very nature of work and the workplace.


- * They must accomplish more with fewer people while constantly developing and reskilling their employees.
- They must accomplish more, in terms of dealing with new data and information streams, while coping with a finite pool of human resources, often with lower skill levels, and limited capacity for constant reskilling their employees.

AI, especially generative AI, can propel this revolution.

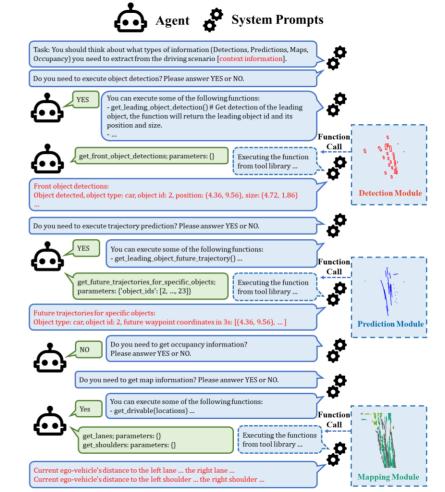
Going to the next level - AGENTIC AI


https://kms-technology.com/emerging-technologies/ai/agentic-ai-the-next-evolution-in-intelligent-automation.html

Human intervention can happen at multiple points, as needed or deemed necessary

Going to the next level - AGENTIC AI

Learning & Knowledge Refinement


https://kms-technology.com/emergingtechnologies/ai/agentic-ai-the-next-evolution-inintelligent-automation.html

Going to the next level - AGENTIC AI

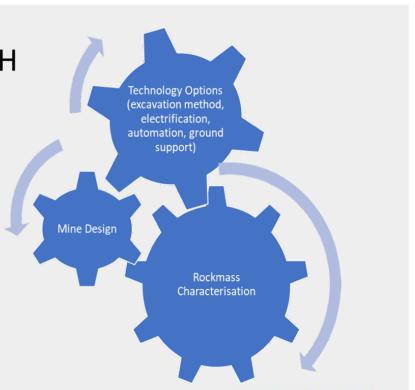
Learning & Knowledge Refinement

Example: Nvidia's Agent-Driver

httpshttps://usc-gvl.github.io/Agent-Driver/

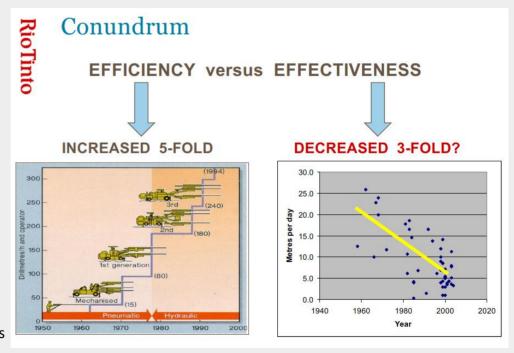
Overview

- My journey: where my perspective comes from
- Industry 4.0
 - and the long road to Industry 3.0
- Digital Transformation and Mining 4.0
 - where are we? (current status)
 - where can we get to? (feasible goals)
 - how can we get there? (enablers/strategy)
 - Macro-Level (Value-Chain)
 - challenges and mitigations?



Adopting a
HOLISTIC SYSTEMS APPROACH
to
Technology Development
& Deployment is CRITICAL

e.g. for Underground Hard Rock Mining



Successful
TECHNOLOGY
DEPLOYMENT
does NOT
necessarily lead to
better outcomes

e.g. for Underground Development Drilling

- more powerful, efficient, mechanized drills
- yielding to lower advance rates

Successful
TECHNOLOGY
DEPLOYMENT
does NOT
necessarily lead to
better outcomes

e.g. for Underground Development Drilling

- more powerful, efficient, mechanized drills
- yielding to lower advance rates

Have to **maintain** (and often enhance) core competencies of work force

- Operators
- Maintainers
- Supervisors
- Planners
- Managers in order to unlock value...

PHASED FAST IMPLEMENTATION IMPLEMENTATION SLOW PHASED IMPLEMENTATION IMPLEMENTATION High Low **COST PRESSURE SCHEDULE PRESSURE BUSINESS STAKEHOLDER SUPPORT**

Choice of Approach for Technology Implementation / Deployment

GMG (Global Mining Guidelines Group). 2019, Guideline for the Implementation of Autonomous Systems in Mining. https://gmggroup.org

PROJECT PREPARATION Operational maturity: manual "AS-IS" Workforce management: Stakeholder engagement: Process management: · Determine "as-is" and · Skill inventory and gap Stakeholder identification, including assessment "to-be" states formal and informal · Identify what is to Communicate impact of **ONGOING** Design change to workers stakeholders happen ("the what") (influencers, local · Frame metrics and key **PROCESSES** · Upskilling, lateral champions, affected performance indicators movement, attrition · Develop skills pipeline communities) Operational Involve employee Engage using a Develop the supply readiness champions communication plan or chain assessment strategy Process impact analysis Assign responsibility and planning OEM/OTM support Risk assessments/ IMPLEMENTATION/EARLY OPERATION risk Operational maturity: hybrid management Project Workforce management: Stakeholder engagement: Process management: controls · Workforce selection · Listen to stakeholders' Establish process Implement Plan-Do-Check-Act discipline concerns and respond Management Implement transparently · Deliver on the "what" reporting · Deliver on KPIs training/upskilling Manage skills pipeline · Maintain strong senior · Plan-Do-Check-Act Manage transition from management · Deliver on husiness OEM to in-house set-up sponsorship drivers Keep front-line decision Maintenance Planning · Engage with regulators makers onboard during Communicate value for Process planning implementation period stakeholders and senior "TO-BE" management MATURE/STEADY STATE Operational maturity: highly autonomous Sustain Workforce management Stakeholder engagement: Process management: · Mature training plan · Manage continuing · Software/system interface and competency change, new steady development pipeline updates/upgrades · Carry out commitments Competency Move into continuous · Standard reports by improvement cycle and assessment Progression plans for exception adapt to ongoing workforce change

Change Management!

GMG (Global Mining Guidelines Group). 2019, Guideline for the Implementation of Autonomous Systems in Mining. https://gmggroup.org

QUESTIONS?